

A Structural Design of Regional Virtual Power Plant Specific to Industrial Development Area

Reported by Yongchao Ji Technology Center of NARI Group Co. (State Grid Electric Power Research Institute)

Introduction

Air Pollutions

Resource Exhaustion

Global Warming

ΡV

Wind Power

Tidal Power

南瑞集团公司(国网电力科学研究院) NARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUTE 2

Introduction

Typical Daily RES Output

RES + Storage

Virtual Power Plant (VPP) is, by advanced metering, communication and controlling technology, an aggregation of DG, Storage, Intelligent Loads and such DER, to coordinate and optimize operations of Multi-DER via higher software framework.

VPP Status Quo

Major VPP Projects in Europe

Projects	Start-End Time	Status	Main Countries
STADG VPP	2003-2007	Accomplished	Germany
UNNA	2004-2006	Accomplished	Germany
VIRTPLANT	2005-2007	Accomplished	Germany
PM VPP	2005-2007	Accomplished	Netherlands
FENIX	2005-2009	Accomplished	UK, Spain, etc.
GVPP	2006-2012	Accomplished	Denmark
VGPP	2007-2008	Accomplished	Austria
HARZ VPP	2008-2012	Accomplished	Germany
Pro VPP	2008-2012	Accomplished	Germany
EDISON	2009-2012	Accomplished	Denmark
FLEXPOWER	2010-2013	Accomplished	Denmark
WEB2ENERGY	2010-2015	In Research	Germany, Portland, etc.
TWENTIES	2012-2015	In Research	Belgium, Germany, etc.

VPP Status Quo

Total Annual VPP Capacity and Implementation Spending by Region, World Markets: 2016-2025 (Source: Navigant Research)

南瑞集团公司(国网电力科学研究院) NARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUTE

南瑞集团公司(国网电力科学研究院) NARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUTE

P: ProducerM: Mid-linkC: Consumer

Terminals can be both producer and consumer. The trade between suppliers and users can be either mid-linked or direct.

All the trading behaviors are based on the VPP operation service platform.

Conventional Supply-Demand Relationship

New Relationship in VPP Covered Area

南瑞集团公司(国网电力科学研究院) NARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUTE

2016 Electricity Tariff in **Zhejiang** Province

	Voltage Level Pric	Motor	Time-of-use Price			Basic Price	
Users Category		Price (RMB)	Peak (RMB)	Medium (RMB)	Low (RMB)	Trans. Cap. (¥/kVA/Mon.)	Max Cap. (¥/kW/Mon.)
	1-10 kV	0.6966	1.1146	0.9326	0.4486	30	40
Large	20 kV	0.6766	1.0893	0.9093	0.4326	30	40
Industrial	35 kV	0.6666	1.0766	0.8976	0.4246	30	40
Consumers	110 kV	0.6446	1.0436	0.8686	0.4046	30	40
	220 kV+	0.6396	1.0336	0.8606	0.4006	30	40
General	1 kV-	0.8929	1.4029	1.0979	0.5749		
Industrial &	1-10 kV	0.8549	1.3529	1.0549	0.5429		
Users and	20 kV	0.8349	1.3269	1.0322	0.5262		
Others	35 kV+	0.8249	1.3139	1.0209	0.5179		

2016 Electricity Tariff in Jiangsu Province

	Voltage Level Price (RMB	Motor	Time-of-use Price			Basic Price	
Users Category		Price (RMB)	Peak (RMB)	Medium (RMB)	Low (RMB)	Trans. Cap. (¥/kVA/Mon.)	Max Cap. (¥/kW/Mon.)
	1-10 kV	0.6601	1.1002	0.6601	0.3200	30	40
Large	20 kV	0.6541	1.0902	0.6541	0.3180	30	40
Industrial	35 kV	0.6451	1.0752	0.6451	0.3150	30	40
Consumers	110 kV	0.6301	1.0502	0.6301	0.3100	30	40
	220 kV+	0.6151	1.0252	0.6151	0.3050	30	40
General	1 kV-	0.8366	1.3943	0.8366	0.3789		
Industrial & Commercial	1-10 kV	0.8216	1.3693	0.8216	0.3739		
Users and	20 kV	0.8156	1.3593	0.8156	0.3719		
Others	35 kV+	0.8066	1.3443	0.8066	0.3689		

Projects Investment Budget Estimation

No.	Items	Sum(¥)
1	Distributed PV Station	119,850,000
2	Multi-level Energy Storage Station	76,768,050
3	Combined Cooling and Heating Power Station	42,984,692
4	Electric Vehicle Charging Station	7,850,000
5	VPP Comprehensive Operation Service Platform	26,343,937
6	Automatic Demand Responding System	14,230,000
7	Environmental Protection Investment	72,000
8	Labor Security and Industrial Hygiene Special Fund	1,711,000
	Total	289,809,679

No.1 Distributed PV Station

Total Investment	119.85 million	Invest per Unit	7.99 million/MW
IRR (%)	10.42%	lc	8%
NPV(¥)	21,929,200	Payback Period	7.57 years

No.6 Automatic Demand Responding System

Total Investment	14.23 million		
IRR (%)	13.35%	lc	8%
NPV(¥)	3,546,200	Payback Period	5.19 years

No.2 Multi-level Energy Storage System

Based on 2016 Electricity Tariff in Zhejiang Province

Total Investment	76.7681 million	Invest per Unit	1.8278 million/MW
IRR (%)	5.25%	lc	8%
NPV(¥)	-11,511,300	Payback Period	11.15 years

Based on 2016 Electricity Tariff in Jiangsu Province

Total Investment	76.7681 million	Invest per Unit	1.8278 million/MW
IRR (%)	8.41%	lc	8%
NPV(¥)	1,745,100	Payback Period	8.68 years

No.3 Combined Cooling and Heating Power Station

Total Investment	42.9847 million	Invest per Unit	2.1071 million/MW
IRR (%)	15.18%	lc	8%
NPV(¥)	22,764,600	Payback Period	5.82 years

No.4 Electric Vehicle Charging Station

Total Investment	7.85million		
IRR (%)	13.3%	lc	8%
NPV(¥)	1,691,800	Payback Period	5.36 years

Overall Index of Finance

Static Invest.	277.2867 million	Basic Circulating Fund	107.4 million
Dynamic Invest.	290.1025 million	lc	8%
Return of Invest.	3.13%	Net Profit Rate	4.92%

Analysis of Finance Before Fund-raising

	IRR (%)	NPV (million RMB)	PP (year)
Pre Income Tax	9.35%	25.7939	7.52
After Income Tax	8.56%	10.2929	7.82

Analysis of Finance After Fund-raising

	IRR (%)	
Capital	9.34%	

- 1. Compared to the western markets, VPP is a budding concept in China yet with enormous development potential.
- 2. With large-scale application of energy storage system, VPP will be more flexible on the control of power flow.
- 3. Information Communication Technology makes it possible to realize point-2-point Energy trading.
- 4. Positive local policies will deeply affect the profit of constructions of VPP, especially the energy storage industry.

Thank you!

Reported by Yongchao Ji Technology Center of NARI Group Co. (State Grid Electric Power Research Institute)